Subject Code: B13102/R13

I B. Pharmacy I Semester Regular/Supplementary Examinations Feb. - 2015 REMEDIAL MATHEMATICS-I

Time: 3 hours Max. Marks: 70

Question Paper Consists of **Part-A** and **Part-B**Answering the question in **Part-A** is Compulsory,
Three Questions should be answered from **Part-B*******

PART-A

- 1.(a) Find the no of permutations that can be made using the letters of the word 'ALGEBRA'.
 - (b) Simplify $\sin(45^0 + A)\sin(45^0 A)$.
 - (c) Find the centroid if the triangle whose vertices are (3, 1), (-5, 2) and (-1, 6).
 - (d) Find $\lim_{x\to 0} \frac{\tan(\sin x)}{x}$
 - (e) Evaluate $\int \frac{\log x \cdot \log(\log x)}{x} dx$.
 - (f) Solve $y' + 2xy = e^{-x^2}$.

[3+4+4+3+4+4]

PART-B

- 2.(a) The 4^{th} term of a geometric progression exceeds the second term by 24 and the sum of the 2^{nd} and 3^{rd} term is 6. Find the progression.
 - (b) Find the value of $\tan 75^{\circ} \cot 75^{\circ}$.

[8+8]

- 3.(a) Solve the system of equations x + y + z = 8; 2x + 3y + 2z = 19 and 4x + 2y + 3z = 23, using Crammer's rule
 - (b) The angle of elevation of the top of a tower from a point on the same level as the foot of the tower is 15° . On moving 100 m towards the tower, the angle of elevation increases to 30° . Find the height of the tower.

[8+8]

- 4.(a) For what values of 'x', the area of the triangular region enclosed by the segments joining the points (3, 4), (x, -1) and (4, -6) will be 7.5 sq. units.
 - (b) If $f(x) = \begin{cases} 0, & when \quad x^2 > 1 \\ 1, & when \quad x^2 < 1 \end{cases}$. Find whether f(x) is continuous at x = 1 and x = -1 $\frac{1}{2}, & when \quad x = 1$

Page 1 of 2

[8+8]

Subject Code: B13102/R13

- 5.(a) Find the equation of the straight line passing through (1, 1) and perpendicular to the line passing through (3, 5) and (-6, -2).
 - (b) Find the derivation of $\frac{e^x x^2}{\log x}$.

[8+8]

- 6.(a) Evaluate $\int_{0}^{\pi/2} \log(\tan x) dx$.
 - (b) Find the differential equation from the equation $y = Ax^3 + Bx^2$.

[8+8]

- 7.(a) Find the area lying between the curves $y = x^2$ and the straight lines y = 0, x = 1 and x = 2.
 - (b) Solve $\frac{dy}{dx} = \frac{x y}{x + y}$.

Page 2 of 2